EXPONENTIATION OF POWER SERIES

1. Purpose

Given a formal power series with constant coefficient zero,

$$Q = a_1 x + a_2 x^2 + \dots$$

to calculate the coefficients c of the series

$$e^{Q} = 1 + c_1 x + c_2 x^2 + \dots$$

2. Method

To use the differential equation satisfied by the series S := e^{Q} is not feasible due to the lack of storage facilities. However, from the fact that

$$e^{Q} = 1 + \sum_{h=1}^{\infty} \frac{1}{h!} Q^{h}$$

we have, using the notation of the two preceding programs,

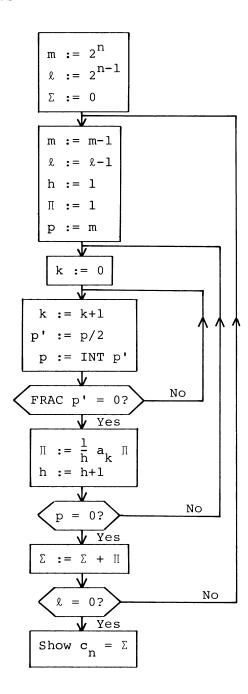
$$c_n = \frac{1}{h!} a_{k_1} a_{k_2} \dots a_{k_h}$$

where the sum comprises all systems of indices (k_1,k_2,\ldots,k_h) satisfying the conditions (2) of the program "Reciprocal Power Series". As before, these systems are coded in terms of the binary representation of the integers m satisfying $2^{n-1} \leq m < 2^n$, and we thus obtain

$$c_n = \sum_{m=2}^{2^n-1} \frac{1}{h!} \pi_m$$
,

where $\boldsymbol{\Pi}_{m}$ has the same meaning as in the two preceding programs.

3. Flow Diagram



4. Storage and Program

$^{R}_{0}$	R ₁	$^{\rm R}2$	R ₃	R ₄	R ₅	^R 6	^R 7
	2^n	2 ⁿ⁻¹	k	h	р	П	0
	m	L					Σ
	00				25		
	→ 01	1			26		
	02	STO 6			27		
	03	STO 4			28		
	04	STO-1			29		
	05	STO-2			30		
	06	RCL 1			31		
	07	STO 5			32		
	→ 08	CLX			33		
	09	STO 3			34		
	→ 10	1			35		
	11	STO+3			36	STO*6	
	12	RCL 5			37	RCL 4	
	13	2			38	STO÷6	
	14	÷			39	1	
	15	INT			40	STO+4	
	16	STO 5			41	RCL 5	
	17	LAST x			42	$x \neq 0$	
	18	FRAC			43	GTO 08	
	19	x = 0			44	RCL 6	
	20	GTO 10			45	STO+7	
	21				46	RCL 2	
	22				47	x ≠ 0	
	23				48	GTO 01	
	24				49	RCL 7	

Locations 21 ÷ 35 are to be used for the program to compute a_k . This program should assume k in R_3 ; at the end of program execution, a_k must be in X register. (If it is more convenient to compute $1/a_k$, this may be done; instruction 36 must then be changed to STO:6.) Register R_0 is available for auxiliary storage. Unused locations are to be filled with NOP instructions.

5. Operating Instructions

Load the program, including the program to compute ak. Move the operating switch to RUN. Select the mode of displaying numbers. If coefficient c_n is desired, load

$$2^n$$
 into R_1
 2^{n-1} into R_2
0 into R_7

(The powers of 2 should be loaded as integers, without using the y^{X} instruction.) Press

> PRGM R/S

to start computation. The calculator will stop by displaying c_n . (Computing time increases exponentially with n.) Caution: For large n, if some a_{ν} are negative, cancellation may cause c, to be contaminated by rounding error.

6. Examples and Timing

$$\boxed{1} \quad Q = \text{Log}(1 - x) = -\sum_{k=1}^{\infty} \frac{1}{k} x^{k}.$$

We should obtain

$$e^{Q} = 1 - x ,$$

that is, $c_1 = -1$, $c_k = 0$ for k > 1. The program to compute a_k is as follows:

Results:

n	c _n	Computing time
1	-1.000000000	3 sec
2	0.000000000	6 sec
3	0.00000000	15 sec
4	1 * 10 ⁻¹⁰	38 sec
5	0.00000000	90 sec

6 0.000000000 3.0 min
$$1 * 10^{-10}$$
 8.1 min

 $\boxed{2}$ The $\underline{\text{Bell numbers}}$ b_n are defined by the expansion

$$e^{e^{X}-1} = \sum_{n=0}^{\infty} \frac{b_n}{n!} x^n.$$

For

$$Q = e^{x} - 1 = \sum_{k=1}^{\infty} \frac{1}{k!} x^{k}$$

we may calculate $\mathbf{a}_{\mathbf{k}}$ by the program

Results:

n	c _n	$b_n = n!c_n$	Computing time
1	1.000000000	1	3 sec
2	1.000000000	2	8 sec
3	0.833333333	5	18 sec

4	0.625000000	15	46 sec
5	0.433333333	52	110 sec
6	0.281944445	203	260 sec
7	0.174007996	877	10 min
8	0.102678571	4140	23 min
9	0.058275463	21147	51 min