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Serendipity, the faculty of finding valuable things not sought for. Does this apply to 
the realm of HP calculators ? Yes, certainly, the most dramatic example being the 
discovery of 41C’s synthetics and their many valuable and unforeseen uses. Now we’ll 
see another striking example, a major capability making an appearance where you 
would least expect it. 
 
Suppose you were asked to select the best and the worst machines to be used in 
finding real roots of polynomial equations of arbitrary degree, i.e:  
 

an x
n +a n-1 x

n-1 + an-2 xn-2+ … + a2 x
2 + a1 x + a0 = 0 

 
among the models in the Voyager series, i.e: HP-10C, 11C, 12C, 15C, and 16C. It’s 
quite probable that you’d select the 15C as the best for the task, as it has the largest 
capacity, the best programming features, and a built-in equation solver. On the other 
hand, the 12C would be likely to be selected as one of the worst for the task, due to its 
small program memory and minimal programming features. Yet, against all odds, we’ll 
see that the 12C is actually best for this particular problem !  “How come ?” you 
might say, “The 12C has no built-in solver, unlike the 15C”. Oh, but it actually does 
have one!  “Does it ? Where in the instruction set is it ?”.  
 
Well, the HP-12C’s instruction set does indeed include a lot of financial formulas. 
But financial or not, in the end they are but mathematical formulas that implement 
mathematical algorithms. The fact that those algorithms do have financial uses is only 
“in the eye of the beholder”. If we can see them in their mathematical purity, perhaps 
we may discover another uses for them unrelated to their intended one. 
 
Thus enlightened, a thorough reading of the HP-12C’s manual reveals that, given a 
series of cash flows, the NPV built-in function computes the resulting Net Present 
Value (NPV) using this neat formula:  
 

NPV = CF0 + CF1/(1+r) + CF2/(1+r)2 + CF3/(1+r)3 +... + CFn/(1+r)n 
 
Where: NPV = Net Present Value of a discounted cash flow 

CFj = Cash Flow at period j 
r = i/100 = periodic interest rate expressed as decimal 
 



Further, the 12C has another built-in function, IRR, which can compute the Internal 
Rate of Return (IRR) which, by definition, is the value of r which makes NPV = 0. 
 
But, as it turns out to be, the above formula for computing the NPV is a polynomial 
equation in the variable 1/(1+r), and computing the IRR is equivalent to solving for 
the value of 1/(1+r) which makes NPV=0. In other words, we can use the built-in 
solver IRR to automatically find a root of an arbitrary polynomial equation in 
1/(1+r). IRR will give us r, then a simple change of variable will give us the value of x. 
Which is more, unlike the 15C’s solver, IRR does not require the user to supply any 
initial guesses, but will compute the root without any input from the user at all . 
 
So, we see that IRR can help us find one root  of an arbitrary polynomial equation. Is 
that all ?  No !  The notes on IRR at the end of the Owner’s Handbook warn us to the 
possibilty of more than one real root and what to do about it. In particular, we are 
informed that the IRR internal algorithm can be invoked in such a way that it accepts a 
user-supplied initial guess, by using the rather odd-looking sequence RCL g R/S ! 
This will allow us to find multiple roots for a given equation ! 
 
But there’s more: not only does IRR find roots for us, but  we can use the NPV built-
in function to evaluate the polynomial for arbitrary user-specified values ! And we can 
also use the ∆% and % functions to perform necessary changes of variable ! 
 
Now you may ask: “How do we specify the coefficients of our equation ?” That one 
is easy: the coefficients are simply entered as cash flows using the built-in CF0 and 
CFj functions. Further, we can use the built-in Nj function to enter multiple 
consecutive equal coefficients, and we can correct any input errors  using the 
sequence RCL g CFj. What more could we ask for ? Let’s summarize: we have 
concluded that the financial functions  

• CF0 and CFj can be used to enter the coefficients of the polynomial 

• Nj  can be used to enter multiple consecutive equal coefficients 

• RCL g CFj  can be used to correct input errors 

• IRR can be used to find a root of an arbitrary polynomial equation 

• RCL g R/S can be used to find additional roots of the same equation 

• NPV can be used to evaluate the polynomial at user-specified values 

• ∆%    and % can  be used to perform the required changes of variable 

 
We’ll see how this all works in full detail in the comprehensive Cases included. 
 



Commented Program listing 
 

• R↓ and X<>Y are the “roll-down” and “X exchange Y” stack operations 
• ∆% is the “percent of change” function 

 
01 g CF0  stores an as the first cash flow 
02   EEX  puts input-detection constant in X 
03   9  (109 is the arbitrary detection constant) 
04   R/S  stops for input of the coefficients 
05 g CFj  stores the coefficients as cash flows 
06   EEX  puts detection constant in X again 
07   9  to test if another coefficient was input … 
08   -  … we subtract and compare against zero 
09 g X=0?  was the value in X equal to 109 ? 
10 g GTO 12 yes, just R/S, done entering coefficients 
11 g GTO 02 no, loop to store the new coefficient 
12 RCL g CFj discards the spurious coefficient stored 
13   1  needed for the change of variable 
14 f IRR  computes the auxiliary root 
15   %  we perform a change of variable to get … 
16   +  … the true root from the auxiliary root 
17   R/S  stops to show the computed root 
18   ENTER needed to terminate numeric input ! 
19   1  for the necessary change of variable 
20   X<>Y  we need 1 in Y, the initial guess X0 in X  
21   ∆%  … and thus we obtain the initial guess 
22 RCL g R/S using it, this computes the auxiliary root 
23   X<>Y  we place 1 in Y and the auxiliary root … 
24   R↓  … in X, ready for the change of variable 
25 g GTO 15 goes to make the change and show the root 
26   ENTER needed to terminate numeric input ! 
27   1  for the necessary change of variable 
28   X<>Y  we need 1 in Y, the value of X in X … 
29   ∆%  and thus we obtain the changed X 
30   STO i stores the changed X value for evaluation 
31 f NPV  evaluates the polynomial for the changed X 
32 g LSTX  retrieves X for the change of variable 
33   RCL n retrieves the degree of the polynomial 
34   Y^X  performs the last change of variable … 
35   *  … so that we now have P(X) as desired 
36   R/S  shows the computed value and accepts input 



37 g GTO 26 loops to compute P(X) for any new input 
 
Usage instructions 
 
A) To find a real root r > 0 of  an x

n +a n-1 x
n-1 + an-2 xn-2+ … + a2 x

2 + a1 x + a0 = 0, 
proceed as follows: 
 
1) press:  f PRGM  
2) key in  an  and press R/S. You should see 1,000,000,000 on the display. 
3) repeat step (2) for all coefficients: an-1 ,a n-2 , … , a0, pressing R/S after each of them. You 

should always see 1,000,000,000 after pressing R/S 

4) after the last one (a0), press R/S a second time. The program will automatically proceed to 
compute and display the real root, if any. 

 
B) To find additional roots of the same equation, proceed as follows: 
 
1) If the program is stopped just after finding and displaying a root, simply key in 

your initial guess for the new root, and press R/S. The program will try and find 
(hopefully) a new and distinct root (if one exists) based on your initial guess. 

 
2) to find further additional roots, repeat step (1) above with another initial guess. 
 
or 
 
3) If the program is stopped somewhere else (for instance, after evaluating the 

polynomial for some x arguments, see case C below) or after the program has 
given an Error finding the first root  (because of multiple roots, for instance, see 
the Notes below), first you may need to press CLX to clear the Error display, if 
any, then press g GTO 18, and follow the instructions on step (1) above. 

 
C) To evaluate the polynomial for some x argument (x>0), proceed as follows: 
 
1) If the coefficients have been already entered, go to step (2) below. Else first, press 

f PRGM and enter all the coefficients, without pressing R/S a second time  after 
entering the last one (else, the program would try to find a root now). 

2) Once all the coefficients have been entered, press g GTO 26 
3) key in your x argument, then press R/S. The program computes and displays the 

value of the polynomial for your given argument. 
4) for additional x arguments, repeat step (3) above. 
 
Notes and limitations  
 



• As written, the program will find positive real roots (r > 0). To find negative 
roots as well, see Case 4 below.  

• After inputting each coefficient an, the constant 1,000,000,000 will be displayed 
to acknowledge the entry. This is so that you can terminate input by simply 
pressing R/S a second time after entering the last coefficient a0,thus none of your 
coefficients should equal precisely 1,000,000,000. If some does, either simply 
rescale all coefficients by 10, or else change the EEX, 9 instructions in steps 2,3 
and 6,7  to some other suitable construct (say, 9, LN. Any two-step expression 
which gives an unlikely constant can be used, but EEX 9 is fastest). 

 
• If the equation has multiple real roots or no positive root (>0) at all, you may get 

an Error display when finding a root. Simply follow the steps of case B  above, but 
first have a look at Case 4 below. A root exactly equal to 0 may give  Error 7  

 
• You can correct input errors easily, if immediately noticed. See Case 1  below 
 
• If all coefficients are distinct, equations up to 14th degree are possible. However, 

if the equation has repeated consecutive coefficients you can enter groups of up to 
99 coefficients (e.g.: zeros) very easily. See Cases 2,3 below. This way, finding 
roots for equations of up to 1480th degree or more is possible ! 

 
• The range of x arguments for evaluation is x>0 . To evaluate for x=0 use x=1E-9 

instead. For negative arguments use the same technique seen in Case 4 below to 
find negative roots. 

 
Case 1: Correcting input errors 
 
Find a root of:   x3 + 2x2 + 10x - 20 = 0 
 

This is the historically famous Leonardo de Pisa's equation, and it will serve us 
well to demonstrate how to correct input errors. We'll erroneously enter 1 for the 
coefficient of the x instead of 10, then we'll immediately correct our mistake on the 
fly. Enter the coefficients and correct the mistake as follows. Press: 
 
f PRGM, 1, R/S, 2, R/S, 1, R/S  [oops ! mistake ! it should be 10] 
                     RCL g CFj  [backs up last coefficient] 
                       10, R/S  [enters correct coefficient] 
             20, CHS, R/S, R/S  [solves for the root] 
 

As you can  see, the sequence RCL g CFj backs up the  last coefficient entered, 
so it can be reentered again. You can use it repeatedly to back up more than one 



coefficient, which can be useful if you entered several wrong coefficients in a row, or 
noticed a wrong coefficient after having entered some more. 
 

After the final R/S the solver gets to work and just 11 seconds later it finds: 
 

x = 1.368808108 [press f 9 to see all decimal digits] 
 
Case 2: Equation with groups of repeated, consecutive coefficients 
 
Find a root of:   x7 + 2x6 + 2x5 + 2x4 + 5x3 + 5x2 + 5x - 25 = 0 
 

This equation features two groups of three repeated, consecutive coefficients, 
namely (2x6, 2x5, 2x4) and (5x3, 5x2, 5x). Our program can take advantage of the fact, 
so we will save entering all repeated coefficients but the first, we'll use less storage 
registers, and the root will be found faster as well. 
 

Now, let's enter the coefficients and solve for the root as follows. Press: 
 
f PRGM, 1, R/S, 2, R/S,   3, g Nj,  
                5, R/S,   3, g Nj, 
               25, CHS, R/S,  R/S 
 

Notice that the repeated coefficients have been entered as a 2 with 3 
occurences and then a 5 with, again, 3 occurrences. After the final R/S, the solver 
proceeds to compute the root and only 18 seconds later it finds: 
 

x = 1.041948351 
 
Case 3: Very high degree equation with many repeated coefficients 
 
Find a root of the 137th-degree(!!)  equation:    x137 +3x56 +8x2 +5x -2002 = 0 
 

This example perfectly illustrates how simply can we deal with large groups of 
equal consecutive coefficients. In this case, although we're dealing with a very high-
degree equation, it is quite sparse with many zero coefficients. So much so that 
among the 138 coefficients only five are non-zero, namely 1, 3, 8, 5, -2002. 
 

We'll take advantage of this fact and won't enter most zero coefficients. First, 
we notice that the equation written in full would be like this: 
 

x137 + (80 zero coefs.) + 3x56 + (53 zero coefs.) + 8x2 +5x -2002 = 0  
 



[no need to write down or count zeros: 80 = (137-56)-1 and 53 = ( 56-2)-1] 
 
so we enter the coefficients and solve for the root as follows. Press: 
 
f PRGM, 1, R/S, 0, R/S, 80, g Nj, 3, R/S,  
                0, R/S, 53, g Nj, 8, R/S, 
                5, R/S, 2002, CHS,   R/S, R/S 
 

The final R/S without input signals that all coefficients have been entered, so 
the solver proceeds at once to search for the root and after just 3 min. 20 sec.  it stops, 
with the newly found root in the display: 
 

x = 1.056741318 
 
Case 4: Finding several distinct real roots of an equation 
 
Find all five real roots of the quintic:   16x5 -180x3 +405x  -136  = 0  
 

This equation should be old hat to all readers of my article "HP-12C Tried & 
Tricky Trigonometrics" featured in Datafile V21 N1 . There, we found its five roots 
on a 12C using trigonometrics. Here, we'll let the solver do the dirty work instead.  
 

First, we'll proceed to reset the program pointer to the beginning of the 
program, then we'll enter all the coefficients. Press: 
 
 f PRGM,  16, R/S, 0, R/S, 180, CHS, R/S, 0, R/S, 
   405, R/S, 136, CHS, R/S, R/S 
 

After only 2 seconds, we'll get  Error 3  in the display, signaling the possible 
presence of several real roots. To find them all, proceed as follows. Press: 
 
 CLX  [to clear the Error 3 display],  
 g GTO 18 [the entry point that allows initial guesses], 
 

And now we'll supply suitably different initial guesses to compute all three 
positive real roots. Press: 
 
   1, R/S:  1.463277004  [1st positive root,  17 seconds] 
   2, R/S:  2.942932637  [2nd positive root, 13 seconds] 
 0.1, R/S:  0.355555392  [3rd positive root, 31 seconds] 
 



To obtain the negative real roots, we need to change the variable x for -x, 
which for this particular example means changing the sign of just the last coefficient (-
136, stored in R5), and then change back the signs of the computed roots. Press: 
 
 RCL 5, CHS, STO 5  [changes the sign of the last coefficient],  
 
 1, R/S, CHS:  -2.038577713 [1st negative root, 25 seconds] 
 3, R/S, CHS:  -2.723187320 [2nd negative root,  12 seconds] 
 
Case 5: Evaluating a polynomial for given x arguments 
 
Evaluate the polynomial  P(x) =  16x5 -180x3 +405x  -136  for x=e, 1/3, √(5) 
 

This polynomial is the same whose five roots we found earlier. Now we'll use it to 
illustrate how to evaluate the right side of an equation for given x arguments. First, we'll assume 
the coefficients haven't been entered yet, so we'll enter them now. Press: 
 
 f PRGM,  16, R/S, 0, R/S, 180, CHS, R/S, 
                0, R/S, 405, R/S,  
              136, CHS, R/S [watch out ! no second R/S!] 
 
 Be careful not to press R/S a second time after entering the last coefficient, as 
this would automatically start the root-searching process, and we don't want to find any 
roots here but simply evaluate the polynomial for several x arguments. To that effect, 
press now: 
 
     g GTO 26,                    [ entry point for evaluations] 
 
     1, g ex, R/S:  -275.8819605  [ P(e),  3 seconds ] 
     3,  1/x, R/S:  -7.600823057  [ P(1/3),  3 seconds ] 
     5, g √x, R/S:  -348.4264577  [ P(√(5)), 3 seconds ] 
 
Final Remarks 
 

Well, I think you’ll agree with me that the capabilities and uses of the built-in 
12C’s IRR solver really are a case of serendipity indeed, and it qualifies as the best 
and fastest solver in the Voyager series for finding a root of polynomial equations. If 
in doubt, just try the above examples on your HP-15C, say, and check your times 
against the ones shown. See ? I told you … 

 


