Press See Displayed

DSP • 4 **0.0000** Set display.

9.3947 Completion time.

ENTER↑ 9.3947

9.2507 Starting time.

f¹ D.MS+ Answer, 14' 40" duration.

DSP 2 0.14 Reset display to two places.

Sample Case: Trigonometric Functions. Compute cosine 60°.

Press See Displayed

9 DEG 60 **60.**

0.50 Answer.

Compute $arc\ cosine\ (-1.)$ expressed in radians.

Press See Displayed

9 RAD 1 CHS

3.14 Answer in radians.

Compute sine 30°.

Press

See Displayed

g DEG 30

0.50 Answer.

Compute arc sine (1.00) expressed in radians.

Press See Displayed

RAD 1

1.57 Answer in radians.

Compute tangent 45°

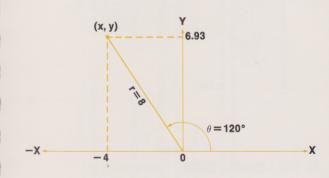
Press See Displayed

9 DEG 45

1.00 Answer.

Compute arc tangent(39.4), expressed in radians.

Press See Displayed


g DEG 39.4

39.4

f-1 TAN

1.55 Answer in radians.

Sample Case: Polar to Rectangular*. Convert polar coordinates $(r=8, \theta=120^{\circ})$ to rectangular coordinates:

*Note that if r is equal to 1.00, then x is equal to $\sin\theta$ and y is equal to $\cos\theta$; a fact that is often useful in programming applications.

Underflow in polar to rectangular conversion may leave out-of-range values in Y. When these values are brought to the X-register, they are set to zero; an executing program halts.